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Abstract

An advanced laser Doppler velocimetry system is developed to acquire measurements of fluctuating velocity–acceleration statistics in
turbulent boundary layers. These correlations are enabled by customized burst signal processing that estimates both the Doppler fre-
quency and the rate-of-change of Doppler frequency, which are related to the particle velocity and acceleration by the interference fringe
spacing. The measurements give important insight into the near-wall turbulence structure since the statistical correlations of interest, uiaj

appear directly in the Reynolds stress transport equations as a sum of the velocity–pressure gradient correlation, � 1
q ui

op
oxj
þ uj

op
oxi

� �
, the

dissipation rate, 2moui
oxk

ouj

oxk
, and the viscous diffusion, mr2uiuj. The immediate power of such measurements is that combinations of terms in

the Reynolds stress transport equation may be characterized by a single statistical measurement at one location in the flow—no gradients
need be computed. In the present paper, data are presented for a constant-pressure 2D turbulent boundary layer at Reh = 6800. Near-
wall results for the dominant term in the velocity–acceleration tensor, the streamwise correlation uax, compare favorably with DNS for
the same quantity at Reh = 1410 and Res = 640; furthermore, the quantity exhibits no Reynolds number effects within experimental
uncertainties. The balance of the velocity–acceleration equation in the streamwise direction is presented, giving the first measurements
for the profile of the velocity–pressure gradient correlation with this technique. This study exhibits the potential of the technique to be
applied to more complex flows, particularly those 3D separating flows in which the motions contributing to the velocity–acceleration
correlations become dominant.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

In this paper, measurements of velocity–acceleration
correlations obtained from an advanced laser Doppler
velocimetry (LDV) system are presented. The principle of
the simultaneous velocity and acceleration measurements
is that for a static interference fringe system, the frequency
of particle fringe crossings is proportional to particle veloc-
ity, while the first time derivative of this frequency is pro-
portional to the particle acceleration. The proportionality
constant is the fringe spacing. By utilizing customized sig-
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nal processing techniques both the Doppler frequency
and the rate of change of Doppler frequency (or chirp rate)
may be determined.

Interest in Lagrangian acceleration measurement has
been growing with the advent of some new optical particle
tracking technologies and the increased computational
and storage capacities of modern computers and digital sig-
nal processors. Due to the complexity of the measurements,
very little information exists about the acceleration struc-
ture in turbulent flows. Published techniques include
indirect measurement via the isotropy assumption by mea-
suring the fourth-order velocity structure functions (Hill
and Thoroddsen, 1997), as well as direct studies using
DNS (Vedula and Yeung, 1999), particle tracking velocime-
try techniques (Virant and Dracos, 1997; LaPorta et al.,
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2001; Voth et al., 1998, 2002), particle image velocimetry
(PIV) (Christensen and Adrian, 2002), and LDV (Lehmann
et al., 2002). In the current study, LDV is chosen primarily
due to its exceptional resolution in the near-wall region.

Previous work has shown the potential for estimating
instantaneous particle accelerations using LDV. The differ-
ential LDV technique can be directly extended to make
acceleration measurements by simply adjusting the signal
processing. In work reported by Lehmann et al. (2002),
the authors compared three signal processing methods for
estimating particle accelerations and used one of the tech-
niques in a flow situation. The results validated that
LDV could successfully be extended to acquire acceleration
measurements in turbulent flows.

Of particular interest in the current study is the role of
the correlation between the fluctuating velocity and fluctu-
ating acceleration in the Reynolds stresses transport (RST)
equations. This term is chosen for two reasons, first
because it appears directly in the RST equations as a com-
bination of up-to-now difficult to measure terms. Second
because the correlation results in low uncertainties relative
to the individual uncertainties of the velocities and the
accelerations, since the random noise content will not result
in any net correlation.

The relationship between the velocity–acceleration cor-
relation and the Reynolds stress transport may be seen
through an analysis of the Navier–Stokes (N–S) equations.
The conventional notations for Reynolds decomposition
are used to follow—uppercase variables are instantaneous
quantities while lowercase variables denote fluctuating
quantities and over lines denote the average of the quantity
beneath. A basic, linear form of the N–S equations in ten-
sor notation is

Ai ¼ �
1

q
oP
oxi
þ mr2Ui; ð1Þ

where Ai is the Lagrangian fluid particle acceleration, q is
the fluid density, P is the pressure, and Ui is the particle
velocity. Since this equation is linear, the fluctuating form
is analogous. By multiplying the fluctuating form of Eq.
(1) by the fluctuating velocity uj and Reynolds averaging
one obtains

aiuj ¼ �
1

q
uj

op
oxi
þ mujr2ui. ð2Þ

By switching the indices in Eq. (2) and adding the result
back with the original equation, the following form results:

aiuj þ ajui ¼ �
1

q
uj

op
oxi
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op
oxj
þ mujr2ui þ uir2uj. ð3Þ

The final term on the right hand side of this equation may
be decomposed into dissipative and diffusive terms, as
shown by Pope (2000):

mujr2ui þ uir2uj ¼ �2m
oui

oxk

ouj

oxk
þ mr2uiuj; ð4Þ

which appear directly in the RST equations given as
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In this way, the velocity–acceleration tensor is directly re-
lated to the RST equations by the sum of the velocity–pres-

sure gradient correlation, Pij ¼ � 1
q ui

op
oxj
þ uj

op
oxi

� �
, viscous

diffusion, Dmij ¼ mr2uiuj, and dissipation rate, �ij ¼
2moui

oxk

ouj

oxk
tensors. Thus the velocity–acceleration fluctuation

correlation measurements give an alternate equation (apart
from Eq. (5) itself) for determining Pij when measurements
for Dmij and �ij are possible.

The importance of the velocity–pressure gradient term
in complex wall-bounded flows has been shown for low
Reynolds numbers by the DNS of Coleman et al. (2000).
In the strained channel flow DNS, the authors discovered
that Pij is of primary importance to the evolution of the
Reynolds stresses. They showed that the lag between the
mean shear rate and the Reynolds shear stresses, a key
problem in 3D flows, is primarily due to this term.

In this paper, we wish to utilize the capabilities of a new
advanced LDV for velocity–acceleration correlation mea-
surements in a 2D constant pressure turbulent boundary
layer at Reh = 6800. This simplest of turbulent boundary
layer flows has been the subject of many experimental stud-
ies in the past. DeGraaff and Eaton (2000) give an extensive
review of the work that to this point has primarily involved
the measurement of velocity statistics. The velocity–accel-
eration measurements add to the database of information
on this flow and give insight into the mechanisms leading
to Reynolds stress transport.
2. Apparatus and instrumentation

Measurements were taken in the turbulent boundary
layer of the Aerospace and Ocean Engineering Department
small boundary layer wind tunnel. A detailed description
of this facility in its present configuration is given by Ben-
nington (2004). The nominal dimensions of the test section
are 23 cm wide by 10 cm high by 2 m long. The measure-
ments were acquired 1.16 m downstream of the contraction
on the centerline of the tunnel. The floor boundary layer
was tripped to turbulence using a pair of square bars with
edges of 0.32 cm spanning the width of tunnel floor. The
two bars were spaced by 20 cm with 20 grit sand paper
attached to the floor between the bars. The measurements
were acquired at over 350 bar-heights downstream of the
trip arrangement, resulting in a fully relaxed boundary
layer. The current measurements showed the inviscid core
of the wind tunnel to have a velocity of 26.9 m/s with
0.3% turbulence intensity and another 0.7% low frequency
unsteadiness. The unsteadiness was found to be low fre-
quency, below 10 Hz and thus did not correlate with the
higher-frequency active turbulent motions in the boundary
layer.
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The measurements were acquired using an advanced 3D
laser Doppler velocimetry system. A perspective schematic
view of the probe is given in Fig. 1. The LDV utilizes six
laser beams, two each of 476.5 nm, 488 nm, and 514.5 nm
wavelengths. The beams are conditioned on a remote opti-
cal table, where one beam for each of the three wavelengths
is frequency shifted using Bragg cells. The shifts are
40 MHz, 80 MHz, and 60 MHz for the 476.5 nm, 488 nm
and 514.5 nm wavelengths, respectively. The conditioned
beams are coupled into six polarization preserving fiber
optics with 4 lm diameter cores. The six fibers are mounted
into three independently-adjustable optics heads beneath
the floor of the wind tunnel. The light from the fibers are
collimated at 1.3 mm diameter and three achromatic lenses
are used to focus the pairs of beams to a diffraction-limited
spot size of approximately 125 lm in the measurement vol-
ume. The pairs of beams have a 10� full-angle of intersec-
tion, resulting in a nominal fringe spacing of 2.6 lm. The
three measurement volumes formed lie along bisectors
given as

b̂476:5 nm ¼ 0:7071̂iþ 0:7071ĵ

b̂488 nm ¼ 0:7071ĵ� 0:7071k̂

b̂514:5 nm ¼ 0:7071ĵþ 0:7071k̂

ð6Þ

in tunnel coordinates with x aligned with the freestream
velocity, y normal to the floor, and z being the third axis
of a right hand system. The velocity and acceleration mea-
surement directions, resulting from the planes of intersec-
tion of the laser beams are given also in tunnel
coordinates as

û476:5 nm ¼ 0:5̂i� 0:5ĵþ 0:7071k̂

û488 nm ¼ 0:7071̂i� 0:5ĵ� 0:5k̂

û514:5 nm ¼ 0:7071̂iþ 0:5ĵ� 0:5k̂

ð7Þ
Fig. 1. Schematic of the LDV probe; BT: 488 nm transmitting optics, GT:
514.5 nm transmitting optics, PT: 476.5 nm transmitting optics, R:
receiving optics. Tunnel coordinates are given.
A fourth lens, 50.8 mm in diameter, is used to collect
light scattered nominally in the �y direction from the
nearly monodisperse 0.6 lm diameter DOP seed particles
generated through a vaporization/condensation process.
Another lens is used to couple the received light into a
62.5 lm diameter multimode fiber which is connected to
chromatic separation optics that feed the received light to
three Hamamatsu model R4124 photomultiplier tubes that
convert the three intensity signals to electrical signals.
These signals are individually amplified and the signals
from the 476.5 nm and 488 nm channels are combined into
a single signal. The two channels of data are then simulta-
neously digitized at 8 bit resolution and 250 MS/s using a
Strategic-Test model UF.258 high-speed digitizer board
installed in a standard PC. The signals are acquired in
bulk, 0.54 s duration, single-shot records that contain
many thousands of bursts. No electronic triggering is
used. The data are then permanently stored on swappable
IDE hard drives so that signal processing may be done off
line.

The signal processor used is software-based and was
developed for this project. The processor consists of four
important modules: a burst recognition algorithm, a
dual-burst separation algorithm, an FFT-based frequency
processor, and an FFT-based chirp processor. The burst
recognition algorithm is computationally linear and based
upon the time-local root-mean square (RMS) of the signal
and the correlation coefficient for a Gaussian fit to the local
RMS. This algorithm allows very efficient centering of the
signal in the processor window and results in a good esti-
mate of the burst window parameters of the Gaussian
model. The dual-burst separation algorithm is similar to
the one developed by Nobach (2002), and allows a very
high seeding rate to be used since very closely-spaced bursts
may be processed. The frequency processor constructs the
frequency spectrum for each recognized burst in order to
identify the Doppler frequency peak for each channel and
interpolate the frequency using a Gaussian fit to three
points around the peak. Finally, the chirp processor is
the non-parametric technique described by Lehmann
et al. (2002) utilizing Gaussian windows and Gaussian
spectral peak interpolation. Validation for both the fre-
quency and chirp algorithms is done by requiring a modi-
fied signal-to-noise ratio (Shinpaugh et al., 1992),

SNR1 ¼ 10log10 N
r2

signal

r2
noise

 !
dB; ð8Þ

where r2
i is the variance of i and N is the signal length, be

above 24 dB for all channels simultaneously. Further de-
tails of the processor algorithms will also be explained by
Lowe (2006).

With conventional LDV techniques, the signal process-
ing step ends when the particle velocity has been estimated
by determination of the Doppler frequency. By introducing
the additional step to estimate the signal chirp, the tech-
nique is extended to allow for Lagrangian particle acceler-



Fig. 2. Variation of the RMS error in the estimated chirp normalized by
the spectral line width with signal-to-noise ratio, SNR1. ZP refers to
doubling the raw signal length by adding samples with a values of zero.

Table 1
Experimental uncertainties

Term Uncertainty

U+ ±0.08
u2=u2

s ±0.11
v2=u2

s ±0.17
w2=u2

s ±0.11
uv=u2

s ±0.05
ðuiajÞm=u4

s ±0.035
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ation estimates. Since the LDV is a zeroth-order instru-
ment a Taylor expansion of the velocity gives

UðtÞ ¼ fDðtÞd ¼ f0 þ
df
dt t¼t0

ðt � t0Þ þO½ðt � t0Þ2�
� �

d; ð9Þ

where U is the particle velocity measured by the LDV, fD is
the Doppler frequency measured, and d is the fringe space
which is assumed constant within the measurement vol-
ume. Obtaining the chirp, c � df

dt t¼t0
, involves higher relative

uncertainties than the velocity measurements, so care must
be taken to ensure that the LDV system being used will
have sufficient dynamic range to distinguish flow accelera-
tions from measurement variance and bias. To do this we
desire LDV optics that result in a large number of fringes
and a large Rayleigh length for the laser beams resulting
in small fringe gradient (Miles, 1996). Furthermore, in
the current study, near-wall measurements are desired;
since the measurement volume diameter must be small to
accommodate these measurements, a compromise design
must be found. The current LDV achieves this compromise
by using relatively large angles for interfering beam pairs,
resulting in a small fringe spacing. The nominally spherical
125 lm diameter measurement volume has about 50 fringes
for each interference pattern instantaneously, while the
gradually focused beams give a Rayleigh length of about
25 mm. Much care was taken during alignment to ensure
that the operating fringe system was close to ideal. The
beam waists and intersections were set at the nominal
transmitting lens focal length by observing a magnified im-
age of the diffraction-limited beam spot. To set the beam
waist properly, the fiber optics ferrules were adjusted axi-
ally such that all beams formed the same clear airy diffrac-
tion pattern. The beams were overlapped using high-
resolution angular adjustment of the fiber ferrule/collima-
tor lens assembly. While no measurements were obtained
for the fringe divergence throughout the measurement vol-
ume, sensitivity analysis using the Gaussian beam relations
derived by Miles (1996) with a conservative estimate for ax-
ial misalignment of the beam waists by 5 mm yielded ex-
pected fringe variations from the nominal value of about
±0.1% longitudinally and ±0.5% transversely with respect
to the fringes.

For the current study, knowledge of the performance of
the processor for chirped signals was also necessary. There-
fore, the burst processor algorithms were tested using sim-
ulated burst signals with random phase and noise at
varying levels of SNR1 to validate the processor and esti-
mate the expected uncertainties. The RMS error between
the input and estimated signal parameters was determined
at each statistical noise level and compared with the best-
case of the Cramer–Rao lower bound (CRLB) for that
noise level. The representative RMS errors in the chirp
for several values of SNR1 are given in Fig. 2. Note that
by employing SNR1 and normalizing the RMS chirp error
by the square of the spectral line width, df = fs/N, where fs

is the sampling rate, the results are universal for all burst
durations. For the measurements reported, the Gaussian
interpolation scheme without zero-padding was used.
Importantly, the data in Fig. 2 show that the burst proces-
sor used nearly achieves the lowest possible RMS errors as
given by the CRLB. While techniques theoretically exist for
achieving the CRLB, those which approach these bounds
are not as robust for real signals and require higher sig-
nal-to-noise ratios for reliable estimation (Lehmann
et al., 2002).
3. Experimental uncertainties

Experimental uncertainties have been determined for the
statistical quantities reported. These have been estimated
by processing two sets of burst data with the same velocity
statistics, one set was measured in the flow while the other
set was simulated and given the same average burst SNR.
The reported uncertainties in Table 1 at 20:1 odds are then
1.96 times the RMS variation between the input and output
quantities from the simulation.

As with any instrument, knowledge of its limitations is
essential. With the present one, the measurement of accel-
eration must be carefully considered. In the case of those
turbulent flows where Taylor’s hypothesis is nearly valid,
the accelerations become very small and the processor
broadening significant. Worse than broadening is the case
when the estimation is biased as a function of frequency
or chirp rate. Lehmann et al. (2002) show that biases in
the acceleration estimation can occur, particularly for small



Fig. 3. Mean velocity profile in wall units. Data are compared with those
of Ölçmen et al. (2001) for the same flow at Reh = 7400 as well as the DNS
of Spalart (1988) at Reh = 1410.
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accelerations. This results in a minimum unbiased acceler-
ation measurement for a given flow condition. In particu-
lar, dimensional analysis yields the parameter which
controls this minimum, given by a ratio, A(Dt)/U, where
A is the true acceleration, Dt is the duration of the burst,
and U is average speed of the particle.

Thus the minimum acceleration measurable is propor-
tional to the velocity and inversely proportional to the time
over which that velocity was observed. With LDV, those
two numbers are not completely independent and so a
higher average speed results in a shorter observation time.
In the case of the turbulent boundary layer, this results in
the ability to make low-uncertainty measurements near
the wall since both the velocity is small there and Taylor’s
hypothesis is known to fail (Ahn and Simpson, 1987). The
requirements are further satisfied by complex separating
flows, where the velocity may be small but large accelera-
tions arise due to the significance of the terms in Eq. (3).

Particle lag considerations for acceleration measure-
ments have been discussed by Lehmann et al. (2002). It
was determined that a small particle in a turbulent flow
has the same exponential relative response for rapid
changes in both velocity and acceleration. Therefore, the
particle time lag estimate,

s ¼
d2

p qp þ 1
2
qf

� �
18l

; ð10Þ

where d2
p is the particle diameter, qp is the particle material

density, and qf is the fluid density, will give the frequency
response of the particle to the turbulence. For the 0.6 lm
DOP particles employed in this air flow, a particle lag of
about 1 ls is determined. Thus flow velocities and acceler-
ations with frequencies up to 500 kHz may be sensed with
no appreciable attenuation. Based on the scales of this
flow, the particles will follow all of the meaningful modes
of the turbulence.

Statistical convergence for each of the quantities
reported has been verified and results in deviations much
smaller than the uncertainties reported.

4. Results and discussion

Measurements were acquired in a mean 2D constant
pressure turbulent boundary layer at Reh = 6800. The wind
tunnel was adjusted so that the mean core velocity varia-
tion was less than ±0.25 m/s throughout the entire length
of the test section. The parameters defining the flow condi-
tions are given in Table 2.
Table 2
Flow conditions

Reh = 6800 Ue = 26 m/s

us = 1.032 m/s m/us = 15 lm
d* = 5.1 mm h = 3.9 mm
d = 38 mm H = d*/h = 1.30
All measurements reported were acquired with the
advanced LDV system previously described. For each
point reported, 8.1 s of flow data were acquired, though
due to data transfer rate limits, each point spans about
2.5 min of actual time. Each point resulted in 3.8 GB of
raw data, which were processed to give time-series for the
three components of velocity and acceleration. Statistics
were obtained by ensemble-averaging the results with unit
weighting. Due to very small correlation coefficients
between the velocity and interarrival time, velocity bias
was found to be negligible.

Fig. 3 is a plot of the mean velocity profiles in wall vari-
ables, U+ � U/us, y+ = yus/m, compared with the data of
Ölçmen et al. (2001) for the same flow at Reh = 7400 as well
as the DNS of Spalart (1988) at Reh = 1410. The wall fric-
tion velocity for the present data was determined in two
ways, by fitting the log region of the profile to the law-
of-the-wall,

Uþ ¼ ð1=jÞ lnðyþÞ þ B; ð11Þ
where the Coles’ constants, j = 0.41 and B = 5.0, were
used, as well as by direct fit to the theoretical viscous sub-
layer profile for y+ < 10. The values obtained were
1.032 m/s for the log-layer fit and 0.98 m/s for the sublayer
fit. These values are within the expected uncertainty for
wall friction velocity. For the wall-unit normalization, the
log-layer fit value was chosen since it resulted in the best
collapse with previous results.

The non-zero Reynolds stresses, also in wall coordinates
are given in Figs. 4 and 5. These results compare favorably
with those of Ölçmen et al. (2001) and DeGraaff and Eaton
(2000).

With the considerations from the experimental uncer-
tainties section, the current discussion will be limited to
the streamwise velocity–acceleration correlation since the
other contributions are much smaller in magnitude in the
flat plate boundary layer and on the order of the experi-
mental uncertainties. The measurements for the streamwise
velocity–acceleration correlation profile in wall units are



Fig. 4. Streamwise Reynolds stress profiles in wall units. (*) Current data,
(a) Ölçmen et al. (2001), (b) DeGraaff and Eaton (2000).

Fig. 5. Reynolds stress profiles in wall units. (*) Current data, (a) Ölçmen
et al. (2001), (b) DeGraaff and Eaton (2000).
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given in Fig. 6. For comparison, the DNS data of Spalart
(1988) for the same flow at Reh = 1410 and that of Abe
et al. (2001) in a turbulent channel at Res = 640 are plotted
Fig. 6. Streamwise velocity–acceleration correlation. Data are compared
with (a) the turbulent boundary layer DNS of Spalart (1988) and (b) the
turbulent channel DNS of Abe et al. (2001).
along with the current data. The measurements show
agreement with the low Reynolds number DNS within
experimental uncertainties, indicating little Reynolds num-
ber effects for this quantity when wall scaling is used. The
near-wall differences that are seen may be attributed to
combinations of uncertainties in the y-distance from the
wall, the friction velocity, and the velocity–acceleration
correlation.

The relationship between coherent motions and the
velocity–acceleration correlations is considered by decom-
posing the contributions from the in-plane quadrants.
The major contributors to the Reynolds shear stress are
the correlated motions known as sweeps which occur for
u > 0, v < 0 and ejections occurring when u < 0, v > 0. It
is desired to relate the sweep and ejection motions in uv
to the net value of uax. The results from the quadrant anal-
ysis are plotted in Fig. 7. These results indicate that it is the
sweep motions that dominate the velocity–acceleration cor-
relation very near wall for y+ < 10. For heights above
y+ � 14, the contributions switch such that the ejections
become dominant in producing the correlation, though
the difference is approaching experimental uncertainties.
An explanation of the mechanisms for this phenomena is
proposed by considering the shape of the probability den-
sity functions for the streamwise velocities very near the
wall. Fig. 8 gives the skewness of the streamwise velocity
histograms throughout the profile. It is seen that in the very
near-wall region the histograms are positively skewed, indi-
cating that the range of positive u 0 fluctuations is larger
than the negative ones. This makes sense intuitively
because there is a limit on the lowest velocity since the flow
is always downstream, but the greatest possible velocities
are related to the higher-momentum large-scale eddies
sweeping toward the wall. Note also that the skewness of
u 0 changes sign at the same location that the contributions
from sweeps and ejections switch dominance. Heuristically,
then, the large difference between the mean velocity very
near the wall and the relatively infrequent high-speed
Fig. 7. Quadrant analysis of the streamwise velocity–acceleration
correlation.



Fig. 9. The transport budget for turbulent kinetic energy in the flat plate
turbulent boundary layer at Reh = 6800. In the legend, C refers to the
convection, U ok

ox þ V ok
oy, P ¼ �uv oU

oy is the TKE production, and

Dt ¼ 1
2

ou2vþv3þvw2

oy is the turbulent diffusion.

Fig. 10. The balance of Eq. (3) in the streamwise direction using isotropic
dissipation estimates and measurements of the viscous diffusion and
velocity–acceleration correlation in the flat plate turbulent boundary layer
at Reh = 6800.

Fig. 8. Skewness of the streamwise velocity fluctuation. (*) Current data,
(a) data of DeGraaff and Eaton (2000). The dashed line indicates the value
for a Gaussian distribution.
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sweeps leads to high local viscous shear that acts to limit
the convection of momentum that has reached the wall
and thus stabilize the mean shear rate in a Lagrangian
sense.

With the profile of data acquired it is possible to esti-
mate each of the terms in Eq. (3) for i = j = 1. The viscous
diffusion term, Dm11 ¼ mr2u2 reduces to Dm11 � mo2u2=oy2

for the current zero-pressure gradient flow, since deriva-
tives in the streamwise and spanwise directions are negligi-
ble compared with derivatives in the normal-to-wall
directions. To estimate the dissipation rate, first the turbu-
lent kinetic energy (TKE) dissipation rate is estimated by
balance of the boundary layer approximation for the
TKE transport equation:

U
ok
ox
þ V

ok
oy
þ 1

2

ou2vþ v3 þ vw2

oy

¼ �uv
oU
oy
þ o2k

oy2
� 1

q
dvp0

oy
� �; ð12Þ

where k ¼ 1
2
ðu2 þ v2 þ w2Þ is the TKE and � is the TKE dis-

sipation rate. The current measurements afford direct esti-
mation of all the terms in Eq. (12) except for the dissipation
rate, �, and the pressure diffusion, Dp ¼ � 1

q
ovp0
oy . Since the

dissipation rate is a dominant term, the model of Lumley
(1978), � 1

q vp0 � 1
5
ðu2vþ v3 þ vw2Þ, is used to estimate the

much smaller values for pressure diffusion. The dissipation
rate is then determined by balance of Eq. (12). The TKE
transport budget for the current flow is given in Fig. 9.
All gradients were computed using central differencing.

Given the TKE dissipation rate, one may estimate the
dissipation rate of u2, by either assuming isotropy of the
dissipation rate or else some model for accounting for the
anisotropic dissipation. It was found that common models
predict isotropic dissipation rates throughout the boundary
layer above y+ = 10, so the isotropic estimate, �11 � 2

3
� was

used. The balance of Eq. (3), yielding estimates for the
streamwise velocity–pressure gradient correlation is given
in Fig. 10. Note that the velocity–acceleration correlation
data of Fig. 6 have been spatially smoothed to result in
more realistic estimates for the velocity–pressure gradient
correlations reported in Fig. 10. Since these are the first
measurements of this type, work continues in refining the
technique for low-uncertainty single-point estimates of
the velocity–pressure gradient correlation. Comparing
these results with those of Spalart (1988) reveals that the
velocity–pressure gradient is greater near the wall com-
pared with the lower Reynolds number DNS. Due to the
local isotropy predictions of Kolmogorov (1991) for high
Reynolds number turbulence, we can expect the dissipation
rate to approach more isotropic values for higher Reynolds
number flow. Thus, based upon the measurements and the
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local isotropy theory, it is reasonable to hypothesize that
the pressure rate-of-strain correlation contained within
the velocity–pressure gradient correlation, which is the
key mechanism for isotropization in shear flows (Pope,
2000), is augmented in higher Reynolds number flows near
the wall, leading to a more rapid redistribution of the Rey-
nolds normal stresses.
5. Conclusions

An advanced LDV system was developed for measure-
ments of velocity and acceleration statistics in the near-wall
region of turbulent boundary layers. Using this system mea-
surements have been made in a 2D constant pressure turbu-
lent boundary layer for Reh = 6800. The results for mean
velocities and Reynolds stresses are consistent with previous
data on this flow. The streamwise velocity–acceleration cor-
relation was compared with DNS for this quantity and
showed no Reynolds number effects within experimental
uncertainties. The relationship between coherent motions
and the velocity–acceleration correlation was considered
through a quadrant analysis of the quantity. For y+ < 14,
the sweep motions result in the greatest contribution to
uax, which may be attributed to the positively skewed veloc-
ity histogram in the very near-wall region.

To the authors’ knowledge, this study is the first one in
which measurements of velocity–acceleration correlations
are reported. Therefore, a major goal for the current work
was to validate the velocity–acceleration measurements so
that the instrument may be applied to more complex 3D
flows. The agreement in the near-wall region with DNS
results for the streamwise correlation give confidence in
the application of technique to other flows. Very impor-
tantly, the limitations in the technique have been consid-
ered and reveal that reliable measurements will be
possible in the near-wall region of many complex and sep-
arating flows. In current work, improvements are being
made to the probe that will result in lower-uncertainty
measurements of accelerations as well as direct measure-
ment of the velocity gradient tensor. Using the state-of-
the-art hardware, future studies will reveal the structure
of the dissipation rate and velocity–pressure gradient corre-
lations in many complex flows which have never been
examined to that extent.
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